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The study of various ca&ses of states of stress and strain in a deformable
solid often reduces to a search for & minimum of some functional. This leads
to the solution of equations with potential operators [1].

Such functional can be the total strain energy, the total supplementary
deformation work [2], ete. It is convenient to consider this functional in
an appropriately chosen Hilbert space. This paper is confined exclusively
to equations with potentisl operators.

Section 1 deals with the increment of 2 functional. In this connection,
certaln concepts have been introduced that will be necessary in the sequel,
Sections 2 and 3 present and Justify two methcds of successive approximations
for the solution of the functional equations studied. In Section 4, the
application of these methods to certain problems of the mechanics of deform-
able solids has been considered. In Sections 5 and & & proof has been given
of the convergence of the Bubnov~Gelerkin method and of the method of "par-
tial approximation” for the solution of a certain class of nonlinear differ-
ential equations.

1. Let the functional p(x) be given in the Hilbert space ¥ .
We will assume that it admits & Gato differential py{(x, n), and that this
differential 1is & linear functional relative to he= H,C H.

We will introduce the function wo{z) = 7{x + th), where t is & numerlcal
parameter, Then

Af(z, B =f(z+ R —f(@)=91) —¢(0) =¢ (0) + Y, W(zh
Hence, introducing the notation Ax = grad rlx), we obtain
Af (z, h) = f(z + B) — f(2) = Az, ) + Y/, W (z, h) 1.9

where

Wz, h) =t () 0L, ¢ (1) = (A4’ (z + th)h, k)
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Therefore, if the Gato derivative 4’(x) of the operator 4 exists, then

Expression (1.1) assumes the form (1.2)
Af (z,B) = f(x+ h) — f () = (Az, h) + Y, (A" () A, k) (::_:?lh)

If the functional g(x) is extremal at the point z* & H, then as is well
xnown [1 and 3], at this point (Az*, h) = Df (z*, k) =0 for any h = H,.
Consequently, the extremal points of the functionl f(x) need only be sought
among the solutions of the functional equation

Let us investigate the mechanical significance of the functional w(x, h)
(1.e. of (#’(g)n, n)) in the case when g(x) is the total strain energy of
the solid. Then the element z & H expresses the state of deformation of
the solid resulting from an external influence y & Y, where Y will also
be a Hilbert space, and h & Iflcan be regarded as a possible displacement
of the solid.

Let z & H be the same state equilibrium of the system, and k & H, be
a given admissible displacement. Then from (1.1) we obtain

Af (z, b)) = f(z 4+ k) — f(z) =Yy W (z, }) (1.4)

Hence it is clear that W(x, h) 1s twice the energy that must be expended
in order to impart the displacement h to the solid.

Now we will assume that the external load y 1s some function of the
parameter ) , i.e. y = y()A). We will introduce the following definitions.
The whole of the deformable body and of the external loading y will be
called the deformable system. We will also say that we have a deformable
system with increasing (decreasing) stiffness, if the functional w{(x(i),n)
increases (decreases) with iIncrease of the parameter )\ for an arbitrary
value of the element A & H, or remains bounded from below (above) 1its value
at x» =0, If wW(x(r), n) is independent of ) , and thus also of x , we
have -a linear deformable system.

If stiffness 1s understood to mean the capacity of the solid to resist
deformation, then the above definitions are justified by the following obvi-
ous considerations.

Let us assume that W(x(A), h) increases (decreases) when the value of
the parameter A 18 increased. This means that for large initial values
of the loading i1t will be necessary to expend more (1ess) energy in order
to achieve the additional displacement A than would be necessary with a
smaller initlal loading.

If we call linear systems the first class of systems, we will speak of
systems with nondecreasing stiffness. Simllarly, one can introduce systems
with nonincreasing stiffness. It should be noted that one and the same
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solld can for different types of loading be elther of the first or of the
second class.

Let it be assumed that for a glven state of loading I, & H the solid 1is
in stable equilibrium. Then it follows from (1.2) that in a certaln sphere
D containing polnt x, the followlng condition holds

W (2, h) = (A" (E) h, h) > 1% (h, h) > 0 EED, heH) (1.5

where y = const ; 1.e. for any E e=D the operator A’ (§), 1f 1t exists,
is positive definite and hence self-adjoint. Moreover, 1t also follows that
if the unloaded state 1s one of stable equilibrium, then, for deformable
systems with nondecreasing stiffness, the operator A’ () is positive defi-
nite for any E e H. This also occurs in systems with decreasing stiffness,
when w(x, h) , in decreasing, tends to & certain positive 1limit as e.g. in
systems with physlcal nonlinearitles for which the material always has a
real strength; 1.e. F > ¢?, where [F, 1is the shear modulus, and

¢ = const == 0.

If, however, 1n a system wlth decreasing stiffness for some X=1, (xsxo)
and h # O we have W(x,, n) = O , then during subsequent loading the fol-
lowing two cases are usually observed: (a) the solid gradually or suddenly
goes over into a new state of equilibrium for which again wW(x, h) > 0 ;

(b) the equilibrium state becomes indefinite, or does not exist at all.

The first case 1s usually encountered in nonlinear problems, and the second
in physically linear problems with a horizontal asymptote 1n the stress-
strain diagram. The first case for plates and shells was studled in detail
in (4 and 5]. From what has been said, it follows that the propertles of
the functional W(x, A} , or of the operator 4’(g) , characterize the baslc
mechanical properties of & deformable system.

The expression 4’{(x)hn approximates the difference 4(x + n) — 4A(x) to
an accuracy of terms of order greater than |a| , therefore, Equation

A'(z) b = Ay (1.6)

can be considered as the linear analogue of Equation (1.3) for the determi-
nation of the increment h as a result of the additional loading 4y of
the system above that loading which corresponds to state x

2., We will study Equation
z=1z—o0B 'z (2.1

where o # O 1s an as yet arbitrary coefficient, and B 1s some positive
definite operator. Since Equation E'ix = 0 has the unique solution x = O,
i1t is clear that the solutions of Equation (2.1) will also be the solutions
(usually generalized) of Equation (1.3), and vice versa. Let us form the
recurrence relation

g+ = zM — aB™1 42 (2.2)
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If thls process converges, then, by virtue of what has been said, its
1limit point point will be a solution of Equation (1.3). It turns out that
in many cases 1t is possible to guarantee convergence by suitably selecting
the coefflclent o and the operator p . Moreover, the introduction of
operator B~ into (2.1) makes it possible to adapt thls process to the
approximate solution of different types of differential equations, For this
purpose 1t 1s necessary to choose the operator 5! in such a way that the
element z = 3'x satisfles all boundary conditions of the problem for any
z & H. This means also that each subsequent approximation may be determined
as the solution of the differential equation

Bz = Bz — adz™ (2.3)

the right-hand side of which 1s known. 8uch solution satisfies the boundary
condltions.

Additional requirements, which operator J and coefficlent g must
satisfy, are glven by the following theorem.

Theorem 2.1 . If the functional Ww(x, »), the operator 5 and
coefficlent g satisfy conditions

Wz, h) <K @BhE 0<a<l2/K @EHIEH) (24

where ¥ 1s positive constant, the process (2.2) always converges to some
solution x* of Equation (1.3) independent of the choice of the initilal
approximation, 1if the functional y(x) 1s bounded from belcw and increases
outside a certain sphere p .

For the case when W (z, h) > v*|h[? for arbitrary z &< H and h = H,
and v = const == 0, the solution of Equation (1.3) 1s unique.

. If the operator 4 admits a Gato derivative 4’(x) , then
W(x, h) 1n (2.4) can be replaced by (4’(x)n, h).

Proof . Wewlll say that there is a descent on y(x) if on changing
from ;) to (1) we have

f @) — f @) <0
First we will prove that under conditions (2.4) the process (2 2) leads
to a descent on f(x) . For this we note that x“*” = 2 4+ B and substi-
tute this expression into (1.1)
Af (1:("), h(")) =t (:c(") ~+ h(")) —f (x(")) —_ (Ax("), h(")) + Y, W (x("), h(")) (2.5)
However, from (2.2) it follows that Az = — a"1Bh!"), Hence
Af @Y, B = — a1 (BEY, BV 41/, (W (&), A1)
On the basis of (2.4) there exists a number 8, <1 such that

W (a2, 1) = 0 K (BR™, h™™)
Consequently

Af @, ) = (— a1 + 1/,0,K) (BE®), &) 2.6)
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Then, having in mind the condition (BR™, ") >0, 1t 1s immediately obvi-
ous that, on choosing q in the interval (2.4}, we will have Af < 0, 1,e
the process (2.2} leads to a descent on éx). Hence the sequence {f (z!")}
1s decreasing. Since, accordi to the condition of the theorem,the sequence
is bounded from below, and f%x Increases outside some sphere p , this
sequence has a limit point 7(x’) (¢ D) . We 11l show that this is the
only point r(x*).

In Sactﬂ from the convergence of the sequence {f (z!*)} 1t follows tnat
Af (™, ) — 0, starting with some v . Thus, the right-hand side of (2.6)
converges to zero. However. in §0 far as —a’l 4-1/,8 K == 0, this is possible
only provided (B (z\*V_ "), 20+ _ 20M) _, 0, Since 5 1s a positive defi-
nite operator, this means that z(t1 _, »()  Then from (2.2) it follows that
200 s g%,

Finally, let us assume that W (z,h) > Y?|h[® when = & H and h& H,. Then
s(x) satisfies the conditions of the theorem. We will assume in this case
that there are two solutions x,* and x,* of Equation (1.3), where

f(2*) < f (%)
Writing x,*— x,* = r*, it then follows from (1.1) that
f(zg*) — f(z1*) = oW (z,*, *) >0

which contradicts the above assumption. Consequently x * = x,* . The theo-
rem has been proved.
N ot e . The recurrence relation (2.2) can be generalized by making q

and p depend on vy . However,this improved convergence complicates the
computational program. The convergence can also be improved by making use
of the results in Section 4.

If the operator A’ (z¥), is used as operator J , then the recurrence rela-
tion (2.2) with o = 1 assumes the form of the recurrence relation of the
modified Newton method [6].

In [7] for the solutlon of equatlons of type (1.3) use was also made of
a recurrence relation of the type (2.2) with q = const and ¢ = afv), but
with different assumptions concerning the operators 4 and p . In parti-
cular, it was assumed that f(x) is given in some Banach space and that the
solution of Equatilon 21.3) is unique. The restrictions made here for the
initial functional s x) and the operator 4 are more general, and the con-
vergence conditions found are more convenlent for direct application and
study. In this sense, the results obtalned can be regarded as further devel-
opments of some 1deas in the above-mentioned paper [7]. The process of
steepest descent (without the use of operator B} for the determination of
the extremal point of the functional has been investigated in [8].

3. In place of the functional equation (1.3), let us consider the follow-
ing system of nonlinear functlonal equations

Az =0  k=1,...,n) (3.1)

where 4, 1s a given operator. Such systems describe many mechanics problems
including the basic problem of the equilibrium of an element of a deformable
solid, where x 1s the displacement vector.

We will assume tnat in the process of successive approximations the y-th
approximation g == (z;®, ..., z,(Y) has been reached. As the next
approximation we will take the element 1) with coordinates

xi(v,qu) —_— xi(v)’ xk(erl) = xk(v) _— al.'Bk—]Akx(V)
(i=1,..,k—1, k4+1,...,n) (3.2)
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where B, are certain positive definlte operators.

This process means that at each step only one coordinate is altered. For
the following step elther the same operation can be repeated or we can pro-
ceed to a new coordinate, By a cycle we will mean & set of a definite num-
ber of such operations applied to all coordinates x, Iindependent of the
adopted order concerning index % . By cycling we will mean a sequence of
such c¢ycles, the structures of which can be different.

If an increase A, 1s 1mparted to the x-th coordinate alone, then in this

e f(x -+ ) — f(2) = (Arz, he) + Yy Wi (2, hy) (3.3)

where W{x, h,) has the same meaning as in Section 1.

Teorem 3.1 . If there exlst operators £, such that
Wi (2, i) < Ky (B by bi), 0 < ay < 2/K; @eH, helh) (3.4)

where J, are positive constants, then for functionals satisfying the condi~
tions of Theorem 2.1, the process {3.2) always converges to some solution
x* of the system {3.1), independent of form of the cycling adopted and of
the nature of the initlal approximation.

Proof . As in the precedi case, 1t is not difficult here to prove
that uncer condition {(3.4) processn%3.2) gives rise to a descent on g(x).
In fact, since now Hv)=:(0}...,0,hk“) O

, 0, ..., 0}, we have

F e f @) = (4, Y, B, M)+ 1, Y, B (3.5
On the basis of {3.%) we hence obtain
P — [ @) = — @ = 0K B BT @, <D (3.6)

Since B, are positive definite operators, the right-hand side of (3.6}
is negative for q, in the interval (3.4}, i.e. there is a descent on g{x}.
By considerations similar to those in §he procf of the precedl theoren,
we will deduce that the sequence {f(z'"))} has a 1imit point j(n%. It is
necessary to prove that the element x’ can only be one of the sclutions of
system (3.1). For this purpose we form the difference

o0 0o
fE¥) — 1) = 3 U E) =76 = Ty, B H)
v=N v N

{f'lkv = ka'l - 1'/‘3 Gkvj{k > 0)

Here /(z(N)) is the value-of the functional attalned after the ¥-th cycle,
Setting p = min {,,} = 0, we obtaln

O .
B, BN <pt If &) — f @]
~N

AEh

From the convergence of the sequence {f ('} 1t rollows that to an arbie-
trary small constant &y there corresponds an index N such that

f @Yy — £ ()< ey
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Consequently -~
3 mA B <pttey
v=N

Whenee follows the convergence of the series

«Q

DB )

V==t

Then, A"Y -0, starting with some v = ¥, t.e. 27V L 2™ simnivae-

necusiy for 2311 % = 1,..., n . Having this in view %t fo1lkes oo 2
that z™ — 2%, The theorem has been proved. : from (3.2}

Now we will consider thils same process of sucdegsive approximations, out
with a different method of finding (™1 which turns cut to be very suita-
ble for the solution of many mechanics problems.

We will assumeé that the point ¥ has been reached, and it is necessary
to determine z,(»*1), With this aim, we substitute the found values

" (v) (v}
n oL mey, &§+t,- U M

into the x-th equation of the system (3.1} and write it down in the form
;‘ég:gxgg = 0 {3,?}

By some method we will find an approximate solution of this eguation. We
will denote it by z,{"*!). We have the following theorem.

Theorem 3.2 . Under the conditions of Theorem 3.1, 1f the sub-
sequent approximations X071 are determined as spproximate solutions of
Equation (3.7}, then for an arbitrary eycling this process converges to a
certain #clution of the system (3.1} independent of “he choice of the initlal
approximation.

The proof of this theovem follows directly from Thecorems 2.1 and 3.1. In

fact, we assume that for arbltrary & the operation (3.2] is repeated an
infinite number of times.

Conditions {3.%) correspond to conditions {2.4) of Theorem 2,1, There-
fore this process converges to the exsot solution of Equation {3.7)}. If we
1imit the number of operations, we obtaln an approximate solution with any
desired degree of accuracy. From the convergence of this process follows
the vallidity of the theorem.

The above method of descent represents a generallzation of the Gauss-

Seidel solution of linear algebralc eguallions,

4, We will now turn to the application of the above method to some prob-
lems in contimuum mechanics. Filrst we will consider the question of the
existense of a unique state of equllibrium of a deformable system. However,
we will not speak of unigueness in the general case, but of unigueness of &
state of egulllibrium in 8 class of possible displacements he=H;, correspond-
ing to the given deformable system, Then from Theorem 2.1 we obftain the
following results.
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Result 1 . If, in order to inpart to a deformable system an arbi-
trary admlssible displacement from some possible equilibrium state, 1t 1is
necessary to deliver positive work, then the system has a unique state of
equilibrium for arbitrary values of the parameter A . Mathematically, this
condltion can be expressed by the positive definiteness of the operator

A'(z) (z=H) 1in the space H,H.

It 1s clear that in systems with increasing stiffness there exists always
a unique state of equilibrium in the above sense. The same applies for sys-
tems with decreasing stiffness if the functional Ww(x, k), or (4'(x)n, R),
on decreasing, converges to some positive limit, as occurs in physically
nonlinear problems in the case where the material exhibits actual hardening.
However, this does not mean the exclusion of slip planes. In many cases 1t
1s not difficult, on the basls of the above results, to check the admissibi-
1lity of such a plane and also its length, which guarantees the existence of
a unique solution.

Most nonlinear equations of continuum mechanics can be written down as
Az=Bx 4Cxz =0 (4.1)

where 5 1s an operator of a corresponding linear problem and (¢ 1is some
nonlinear operator. Since the operator 5 1s usually positive definite, it
can be employed in the recurrence relation (2.2). Then the latter assumes

the form ZO+) — (1 . a) 0 — qB1C (4.2)

In many cases 1t is convenient to include 1nto‘operator B (4.1) only
some of the terms of the operator for the linear problem and all the remain-
ing terms are combined with the ald of operator (¢ , since this can lead to
a greatly simplified computatiocnal program. For this purpuse it is also
possible to assume a quite similar well-known operator that satisfiles the
conditions of Theorem 2.1 .

Now we will study some speclal features in the application of process
(2.2), or (4.2), to the search for state of equilibrium in the above two
types of deformable systems, 1.e. with decreasing and increasing stiffness.
We will begin with the first type.

For potentials with gradients of type (4¥.1) 1t is easy to see that
W (z, h) = (Bh, h) + W, (z, B). Moreover, since Ax - Bx as ||lx|~ O, then
W(O,h)= (Bhsh). In addition, W(x, h) decreases with increase of loading;
therefore, max W(x, n) = W(0, nh), and hence it follows that W, (x, a) < O.
Then condition (2.4), which in the present case assumes the form
(Bh, k) + W, (z, k) < K (Bh, h)
will always be satisfied, also with K = 1 . Hence we obtain:

Result 2 . For systems with decreasing stiffness, process (4.2)
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always converges 1f we take
0<<a<C2 (4.3)
However, for values of W(x, h) close to zero, i.e. for values

W, (z, k) — — (Bh, k),

the upper boundary of coefficient ¢ quickly increases and for obtaining
good convergence it is necessary to take o > 2.

From condition (4.3) 1t is evident that in the problems considered process
(%.2) converges also for o = 1 . Then the recurrence relation (4.2) assumes
the form

O+ = — Bl (2 (4.4)

In the theory of plasticity with proportional loading, process (4.4) cor-
responds with the method of "elastic solutions” [9]. Its convergence for
the first and second boundary-value problems 1n the case of actual wcrk-
hardening materials without slip planes was proved in [10], where the rate
of convergence was alsc demonstrated. We note, however, that in many studies
of elastic-plastic deformatlon the method of coordinate descent turns out to
be more effective. In the case when the problem is solved in terms of stres-
ses, this method can be called the method of successive equilibrium or even
the method of successive coupling.

More complicated are those systems with decreasing stiffness, which with
increase of the loading parameter )\ are capable of becoming unstable or
going into a state of neutral equilibrium as a consequence of the physical
nonlinearity of the material, when the stress-strain dlagram has a horizontal
asymptote, or a slip plane. Apparently, it is more convenient to reduce
investigations of the behavior of the equilibrium state of such systems to
the study of the loading process. For this one must introduce the time as
a parameter [11 and 12] or treat the loading as a variable quantlty for the
solution of the system of nonlinear equations obtained by elther Ritz or
Galerkin method [5]). In both cases the problem is reduced to the solution
of a Cauchy problem. Depending on the form of the systems of nonlinear dif-
ferential equatlons obtained, this may lead to the accumulation of appreci-
able errors in the integration process. A similar possibity of carrying out
this idea arises in the application of the akove-described processes (2.2),
(3.2) and (3.7) to the determination of equilibrium states corresponding to
different atages of a successive loading. Thls makes 1t possible to carry
out in principle the calculations to an arbitrary degree of accuracy. It
should be noted, however, that when values of W(x, h) close to zero are
reached, 1t 1s necessary to increase the value of coefflcient o at each
stage of the loading in order to obtaln an acceptable rate of convergence.
The occurrence of slow convergence at a fixed value of coefficlent o , or
divergence of processes (2.2) and (3.2) for the indicated physically non-
linear problems may be interpreted as exhaustion, in some sense, of the
actual ability of the construction. These processes of successive agproxi-
mation also make possible the determination of: (1) the instant of "snap
through” in geometrically nonlinear problems of the type encountered in shell
theory, and (2) "snap through" stable state of equilibrium since in this
case the total energy of the system always remalns bounded from below.

The convergence of the successive approximations in the treated problems
can be increased, if at each stage of the loading y a new operator is
adopted in the corresponding recurrence formulas; this 1s reduced to the
calculation of successive approximations as solutions of the approximately

linearized equations

B(i)h(q+1) —_ a(i)A.‘l:("), h(V+1) — x(v-{»l) — (4,5)
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where B(; 1s an operator close to the operator A4'(x) for x obtained as
the-solutlon in the preceding loading stage y,_,.

The matter is radically simplified for systems with nondecreasing stiff-
ness, possesing unique states of equilibrium as a consequence of which a
"mathematical model™ allows a unique solution. Elastic
systems which in the main undergo dllatation during the process of loading
should be first of all regarded as the above mentioned systems. In this
case the application of process (3.7) does not encounter any major difficul-
ties, and the peculiarity of applying processes (2.2) and (3.2) consists in
the fact that one can not 1limit in advance the coefficlent ¢ from the above
as 1t was possible in (4.3). This is because the value of the coefficient
¢ 1n the inequality 0 < a < ¢ <2 will be the smaller, the higher the
value of W(x, h) reached in the course of deformation, i.e. as the stiffness
of the deformable system is higher. In thls case the coefficlent ¢ can be
determined in several ways: for example, one can make use of the solution
X, * of the linear problem; 1in this case "1b*l|:>|ix*”,which leads t the
value

correctly formulated

(A' (ﬂfn*) h, h)
K>Eun HEm

i.e. to the smallest value ¢ = 2/k.

5, Let Equation (1.3) be a nonlinear differential equation given in a
closed region (1 and with region of definition p. We wlll assume that the
solution x* of this equation can be represented in the form of the conver-

z* (P) = a,¢ (2) + aqq (2) + . .. (5.1)
which 1s differentiable as many times as needed by the differential equatlons,

Here ¢,(P) i1s a complete system of functions satisfying tne boundary con-
ditions, and P 1is an arbitrary point in region

gent serles

As 1is well known, 1t follows from the Bubnov-Galerkin method that function
x(P) 1s approximated by means of n terms of series (5.1)

an (P) = a;M @, (P) + ...+ a,™q, (P) (5.2)

where the coefficlents aﬁ”) are determined from the nonlinear system of
equations

(Azn, @) = 0 (k=1,...,n) (5.3)
which can also be written down as
A,at) =0 (k=1,...,n) (™ =(@™,...,0,™) (5.4)

Theorem 5.1 . If solution x*(P) of equations (1.3) can be ex-
panded in the form (5.1) and

Wz, h) > [ h]} (z, h € D) (5.5)

then the Bubnov-Galerkin method converges, 1i.e. x.(P) - x*(p) .
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Proof .. First we prove that, under the conditions of the theorem,
system (5.4) has a solution that is unique. We will set

h=e@ (P) -+ -+ + .0, (P).

Then

flag + B — 1 (z,) = (Az,, B) + W (2, B) = (40, &) + VoW, (2™, o)
and since W™, &) =W (z,, B) > Y* 2P, the existence of a unique solution of
system {5.4) follows from Theorem 2.1 .

We will further prove that with the coefficients ag")so determined the

transition from x,., to x, leads to a descent on f(x) . For thls purpose
we here set

w, = ay ok, =, +ag (P) 4ot 9, (P)

Then
f (xn..l) - f (xn} = - (Axnl hn) + lllﬁpy (z"n._lr kﬂ)
However, by virtue of (5.3)
" n
Az, b,) = (Axm 2 €;0; (P)) = 2 ¢ (Azx, @) =0
=1 i=1

and consegquently
flag ) — fzg) =YW (zpy, ) >0

l.e. plx,.,) > s(x,) . Since under condition (5.5) the functional r(x) is
bounded from below, the sequence {f(x,)] has a limit point p(x’) . ~We will
prove that this point colncides with r{x*) . Let

h=g* —z' = ag (P)+ s (P)+ -+ Pt -
We form the difference r{x*) — r{x’) , taking into account {5.3) for
n = W
fla*) — [ (") = (A=’ ) + YW (@', B) =
[ o]

= (42, Y o (P) + VW (&, B) =W (&', B) >0
i==]l v

However, since jix’) cannot be smaller than the minimum value of f(x*)
of the functional yi{x) , 1t follows that A= 0, i.e. x* = x’., The theorem
has been proved.

. Note . As a consequence of the above theorem we have the convergence
of the generalized method of Bubnov-Galerkin, and also of the Ritz method
for the problems considered.

In application to problems in the nonlinear theory of shallow shells. the
convergence of Bubnov-Galerkin method has been proved in [13 and 14], and in
[15] it has been studied in a more general formulation. The convergence of
Ritz method with sufficlently general assumption regarding the functional
7{x) has recently been proved in {16].

6., Let the followlng nonlinear differential equation be prescribed in a
closed region Q
Az=Bzx+Cz=0 (6.1)
where £ 1s some linear operator such that for the given boundary condi-~
tions of the problem it is possible to find the exact sclution of the differ-~
ential equation

Bz =y (6.2)

where y 1is an arbitrary function bounded in . We will assume that the
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unknown functlon can, with sufficlent accuracy, be represented in the form

xn (P) = 1§1 «™ @, (P) (6.3)

where @;(™ are certain coefficients and ¢, (P) form a complete system of
functions. Substituting (6.3) into the nonlinear operator (¢ of Equation
(6.1) we obtain n
- J— An)
Ban C(?_}1 a g, (P)) (6.4)
From what was sald above about (6.2), Equation (6.4) can be solved exactly.
Its solution will have the form

2= — BC(Y aq,(P) = zu (P, ax™, . . ., a,™)  (6.5)

‘i=1

which satisfles all boundary conditions of the problems for arbitrary values
of the coefficients a;(", In order that (6.5) should be an exact solution of
the problem it 1s necessary and sufficient that in reglon () we have tne
identity Yn (P) = z, (P). For satisfying this condition, use can be made of
the undetermined coefficlents aé"[ The approximatlon of the method consists
in the fact that it is practically impossible to do thls exactly.

In the computational treatment the above method 1is rather more complicated
than the Bubnov-Galerkin method, it has, however, certain important advan-
tages over thz latter. For example, it enables the solution of partial dif-
ferentlal equations with complex boundary conditions, such as occur, e.g. in
the solution of a certain class of "contact problems”, etc, It is impossible,
or at least very difflcult, to satisfy these boundary conditlions with the
Galerkin method. Moreover, in many cases this method leads to a more accu-
rate solution with the same number of coefficients M?’. It should also be
pointed out that here the functions o, (p) in (6.3) must not necessarily
satlsfy all boundary conditions of the problem, as 1t 1s required in the
application of the Bubnov-Galerkin method.

In combinatlon with the method of successive approximations, this method
was first suggested by Novozhilov [17] for the solution of ordinary differ-
ential equations, requiring that the functions wi(p) satisfy all the bound-
ary conditions., Its subsequent development for the solution of those same
differential equations was given in [18]. In both works there is no proof
of convergence. In the form presented here this method has been appliled to
the solution of nonlinear particular differential equations.(*) In [19] it has
been applied to the solution of ordinary linear differential equations with
varlable coefficlents. In the same work there is also proof of convergence
for one class of differential equations; there 1s also a comparison of 1its
accuracy with that using the Bubnov-Galerkin method.

The identification of the functions y,(P) and x,(P) in the given region
0 , as 1s well known [20], can be achleved in several ways. However, a
sultable one in the present case consists in orthogonalizing the differences
X» (P) — x,(P) to all functions q,(P) . Then the following system of equa-
tions is obtained for the determination of the coefficients ;" :

n

(21 aMe, (P) + B-lc(zl Mg, (P)) . P (P)) =0 (=1,...,n (6.6)

A h
1= 1=

*) S.V. Simeonov. Dissertation. Leningrad Ship-bullding Institute, 1957.
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In this case we have the following theorem.

Theorem 6.1 . If as functions g, (P) we choose the eigenfunctions
of the selfadjoint operator B , and the coefficients ;i are determined
from the system of equations (6.6), then the above method converges, 1i.e.
x,(P) ~ x*(P) , in all cases in which the Bubnov-Galerkin method converges.
Lowever, the approximate solution x,{P) can be more accurate than , (p)
obtained by the Bubnov-Galerkin method only when the method of successive
approximations (2.2) applied to equation {6.1) converges with o = 1 .

Proof . Wewill prove that system (6.6) 1s identical with system
55.33 of the Bubnov-Galerkin method. For this purpose we replace Ax, in
5.3) by the corresponding expression from (6.1?, keeping 1n mind that oper-
ator F 1is selfadjoint, and we obtain

(AYpr Op) = By -+ Cpr @p) = (X, + B7ICY,, Bey)
However, since ¢, 18 an eligenfunction of operator J then
(A%, @) = My (0 + B0, @) = 0 k=1,...,n

where X, .are the corresponding elgenvalues. OComparison of this system with
system (6.6} makes 1t eviaent that they are identlical. Consequently, if the
Bubnov-~Galerkin method converges, then so also deces the present method.

From what has been sald above it 1s clear that y,(P) 1s none other than
the approximation obtained by the Bubnov~Galerkin method, and according to
(6.4} x,(P) =—B0y,(P) . Comparing this expression with (4.2) shows that
xn(P can be regarded as the next approximation of the successive approxi-
mations (4.2) with o« =1 , if we take y,(P) as initial approximation. Then
the convergence of this _process 1s a sufficlent condition in order that x, (P)

be more exact than s, (P) .

Not e Usually x,(P) is obtained more exactly by determining »x,
not by (6.5) but by Formula

z, (P) = (1 — @) ¥, (P) —aB7'C, (P)

Here ¢ can be determined according to Sectlon 4, and w,(ﬁ) satlsfy all
the boundary conditions of the problem.
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