
The study of Yapious cases of stat@s of stress and strain in a deformable 
solid often reduces to a search for a minimum of some functional. This leads 
to the solution of equations with potential operators [l]. 

Such functional can be the total strain energy, the total supplementary 
deformation work 123, etc. It Is convenient to consider this functional In 
an appropriately chosen Hilbert space. This paper is confined exclusively 
to equations with potential operators. 

Sect&on 1 deals with the increment of a functional. In this connection, 
certain concepts have been introduced that will be necessary In the sequel. 
Sections 2 and 3 present and justify two methcds of successive approximations 
for the solution of the functional equations studied. In Section 4, the 
application of these methods to certain problems of the mechanics of deform- 
able solids has been considered. In Sections 5 and 6 a proof has been given 
of the convergence of the Bubnov-Gelerkln method and of the method of "par- 
tial approx~~ti~n~ fw the solution of a certain class of nonlinear differ- 
ential equations. 

1, Let the functional Y(X) be given In the Hitlbert space fl . 

We WILL atmme that it admits a Gato dlfferentlaI DJ(r, h), and that this 

differential is a linear functional relative to hEHH,C H. 

we will introduce the function rpft) = f(x + th), where t 1s a numerical 

parameter. Then 

A*f (5, h) = f (z + h) - f (2) f= tp (1) - ‘f’ (0) = 9’ (0) + “r, w (3, h) 

Hence, lntroduclmg the notation .4x = grad f(x), we obtain 

Af(z,h)=f(2:i-t8)-f~~)==~l,h)?-116~(2,h) (3.2) 

where 

w (2, h) 5;: cp”r (z) (0 < * < 11, ql” (z) == (A’ (2 -I- d&n, h) 
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Therefore, If the Qato derivative A'(x) of the operator A exists, then 

Expression (1.1) assumes the form (4.2) 

Af (x, h) = f (x + h) - f (x) = (Ax, h) + ‘1s (A’ (!.I h, h) 

If the functional Y(X) Is extremal at the point x*EH, then as Is well 

known [l and 33, at this point (AZ*, h) = of (z*, h)= 0 for any h E H,. 
Consequently, the extremal points of the function1 f(x) need only be sought 

among the solutions of the functional equation 

Ax=0 (1.3) 

Let us Investigate the mechanical significance of the functional W(r, h) 

(I.e. gf b'(t)& h)) ln the case when y(r) Is the total strain energy of 

the solid. Then the element x E H expresses the state of deformation of 

the solid resulting from an external influence y E Y, where y will also 

be a Hllbert space, and hE H,can be regarded as a possible displacement 

of the solid. 

Let x E H be the same state equilibrium of the system, and h E Hlbe 
a given admissible displacement. Then from (1.1) we obtain 

Af (x, h) = f (x + h) - f (4 = l/z J+’ (x, h) 0.4) 

Hence It Is clear that W(r, h) Is twice the energy that must be expended 

In order to Imparc the displacement h to the solid. 

Now we will assume that the external load y Is some function of the 

parameter A , I.e. y = v(X). We will Introduce the following definitions. 

The whole of the deformable body and of the external loading 1/ will be 

called the defomliable system. We will also say that we hqve a deformable 

system with increasing (decreasing) stiffness, If the functional W(r(X),h) 

Increases (decreases) with ihcroase of the parameter A for an arbitrary 

value of the element h E H, or remains bounded from below (above) Its value 
at A=O. If i&(h), h) Is Independent of A , and thus also of x , we 

have a linear deformable system. 

If stiffness Is understood to mean the capacity of the solid to resist 

deformation, then the above definitions are justified by the following obvl- 

ous considerations. 

Let us assume that &x(A), h) I ncreases (decreases) when the value of 

the parameter A Is Increased. This means that for large initial values 

of the loading It will be necessary to expend more (less) energy In order 

to achieve the additional displacement h than would be necessary with a 

smaller Initial loading. 

If we call linear systems the first class of systems, we will speak of 

systems with nondecreaslng stiffness. Similarly, one can introduce systems 

with nonincreasing stiffness. It should be noted that one and the same 
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solid can for different types of loading be either of the first or of the 
second class. 

Let It be assumed that for a given state of loading z0 E Hthe solid Is 

in stable equilibrium. Then It follows from (1.2) that In a certain sphere 

D containing polnt x,, the following condition holds 

w (5, h) = (A’ (0 h, h) > 7” (h h) > 0 (EED, hEHI) (1.5) 

where y = const ; I.e. for any E ED the operator A’ (E), If It exists, 

is positive definite and hence self-adjolntt Moreover, It also follows that 

If the unloaded state is one of stable equilibrium, then, for deformable 

systems with nondecreasing stiffness, the operator A’ (E) is positive defl- 

nlte for any 6 E H. This also occurs In systems with decreasing stiffness, 

when W(r, h) , In decreasing, tends to a certain positive limit as e.g. In 

systems with physical nonlinearlties for which the material always has a 

real strength; i.e. E, > c2, where E, is the shear modulus, and 

c = const # 0. 
If, however, in a system with decreasing stiffness for some A= X, (s=xg) 

and h # 0 we have W(xO, h ) = 0 , then during subsequent loading the fol- 

lowing two cases are usually observed: (a) the solid gradually or suddenly 

goes over Into a new state of equilibrium for which again W(x, h) > 0 ; 

(b) the equilibrium state becomes indefinite, or does not exist at all. 

The first case is usually encountered In nonlinear problems, and the second 

In physically linear problems with a horizontal asymptote In the stress- 

strain diagram. The ‘first case for plates and shells was studied In detail 

In [4 and 53. From what has been said, It follows that the propert!.es of 

the functional w(n, h) , or of the operator A’(c) , characterize the basic 

mechanical properties of a deformable system. 

The expression A ‘(x)h approximates the difference A(x + h) - A(x) to 

an accuracy of terms of order greater than llhll , therefore, Equation 

A’(x)h= Ay (1.Q 
can be considered as the linear analogue of Equation (1.3) for the determi- 

nation of the Increment h as a result of the additional loading by of 

the system above that loading which corresponds to state .X . 

2. We will study Equation 

x= x-aB-‘Ax (2.1) 

where a # 0 is an as yet arbitrary coefficient, ai-.d B is some positive 

definite operator. Since Equation Kix = 0 has the unique solution x = 0, 

It is clear that the solutions of Equation (2.1) will also be the solutions 

(usually generalized) of Equation (1.3), and vice versa. Let us form the 

recurrence relation 
x(v+l) = x(v) _ &-’ AX(V) (2.2) 
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If this process converges, then, by virtue of what has been said, its 

limit point point will be a solution of Equation (1.3). It t-urns out that 

in many cases It Is possible to guarantee convergence by suitably selecting 

the coefficient c and the operator B , Moreover, the Introduction of 

operator B-l Into (2.1) makes It possible to adapt Lhls process to the 

approximate solution of different types of differential equations. For this 

purpose It is necessary to choose the operator B-’ in such a way that the 

element z = B-‘n eatlsfles all boundary conditions of the problem for any 

x E H. This means also that each subsequent approximation may be determined 

as the solution of the differential equation 

Bx = Bx(“) - &4x(“) (2.3) 

the right-hand side of which Is known. Such solution satisfies the boundary 

conditions. 

Additional requirements, which operator B and coefficient (r must 

satisfy, are given by the following theorem. 

T h e o r e m 2.1 . If the functional WG, h), the operator B and 

coefficient a satisfy conditions 

w (x,4 < K (Bh, 4 O<a<V (5 E H, h E HI) (2.4’ 

where K 1s positive constant, the process (2.2) always converges to some 

solution X* of Equation (1.3) Independent of the choice of the Initial 

approximation, If the functional Y(X) Is bounded from below and Increases 

outside a certain sphere D , 

For the case when w (I, h) > r2 11 h [I2 for arbitrary 5 E H and h E H, 
and 7 = con& # 0, the solution of Equation (1.3) Is unique. 

Note If the operator A admits a Gato derivative A’(x) , then 
W(x, h) In (b.4) can be replaced by (..j’(x)h, h). 

Proof. 
from .(“) to 

We will say that there Is a descent on y(x) if on changing 
J”+l) we have 

fb (“+q - f (x’“‘) < 0 

First we will prove that under conditions (2.4) the process (2.2) leads 
to a descent on J(X) . For this we note that x(v+l) = x(V) + $‘) and substl- 
tute this expression Into (1.1) 

Af (x(v), /&“)) = f (,@) + h(“)) - f (&‘) = (Ax(“), h(“)) + ‘/aW (x(“), h(“)) (2.5) 

However, from (2.2) It follows that Ax(“) = - a%%(“). Hence 

A f (d”), h(“)) = - a-l (Bh(“), h(“)) + 1/a (W (xc”), h(“)) 

On the basis of (2.4) there exists a number 0,<1 such that 

Consequently 
I+ (X("), h(“))= f)K (Bj&“), h(V)) 

A f (x(“), h(“)) = (- a -’ + ‘&K) (Hz(“), I&“‘) (2.6) 
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Then, having in mind the condition (Bh 
ous that, 

(“), A(“)) > 0, It Is Immediately obvi- 
on choosing a In the interval 

the Process (2.2) leads to a descent on J’ 
2.4), we will have A/ < 0 i.e. 

is decreasing. Since, accordi 
Hence the sequence {f (3c)(y))) 

is bounded from below, and p 
to the condition of the theorem,the sequence 
increases outside some sphere D this 

sequence has a limit point 4 
only point I(x*). 

We .;ill show that thi; Is the 

from the convergence of the sequence 
)-+O, starting with some 

{f (z’“‘)) It follows tnat 
v . Thus, the right-hand side of (2.6) 

f ‘/s@J # 0, this is possible 
is a positive defl- 

.(“) --* z*. 
(2.2) It follows that 

Finally, let us assume that W (ST, h) >, y21] h1j2 when z E H 
4(x) satisfies the conditions of the theorem. 

and h E H,. Then 
We will assume In this case 

that there are two solutions x,* and x2* of Equation (1.3), where 

f (x2*) f f @I*). 

Writing x2*- x, * = h*, it then follows from (1.1) that 

f (~a*) - f (zL*) = ‘l2W (XI*, h*) > 0 

which contradicts the above assumption. Consequently X, * = x2* . The theo- 
rem has been proved. 

Note . The recurrence relation (2.2) can be generalized by making c 
and B depend on v . However,thls improved convergence complicates the 
computational program. The convergence can also be Improved by making use 
of the results in Section 4. 

If the operator A’ (z(~‘); is used as operator B , then the recurrence rela- 
tion (2.2) with a = 1 assumes the form of the recurrence relation of the 
modified Newton method [6]. 

In [7] for the solution of equations of type (1.3) use was also made of 
a recurrence relation of the type (2.2) with a = const and c = a(v), but 
with different assumptions concerning the operators A and B. In parti- 
cular, It was assumed that f(x) Is given In some Banach space and that the 
solution of Equation 1.3) Is unique. 
Initial functional t 

The restrictions made here for the 
9 x) and the operator A are more general, and the con- 

vergence condltlons found are more convenient for direct application and 
In this sense, the results obtained can be regarded as further devel- 

$$~;s of some ideas In the above-mentioned paper [7] The process of 
steepest descent (without the use of operator B) for the determination of 
the extremal point of the functional has been investigated in C8]. 

3. In place of the functional equation (1.3), let us consider the follow- 

ing system of nonlinear functional equations 

A@ = 0 (k: l,...,n) (3.1) 

where Al, is a given operator. Such systems describe many mechanics problems 

Including the basic problem of the equlllbrlum of an element of a deformable 

solid, where Y is the displacement vector. 

We will assume that In the process of successive approximations the v-th 

approximation Z(“’ = (X1(“), . . .) x,1(“)) has been reached. As the next 

approximation we .wlll take the element #i I) with coordinates 

&(“il) = Xi(Y), Xkzic(y+~) m< $v) _ a,;&.-‘Anz(Y) 

(i-1 ,..., k-l, kj-I,..., a) (3.2) 
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where & are certain positive definite operators. 

This process means that at each step only one coordinate is altered. For 

the following step either the same operation can be repeated or we can pro- 

ceed to a new coordinate. By a cycle we will mean a set of a definite num- 

ber of such operations applied to a12 coordinates .xt independent of the 

adopted order concerning Index k . By cycling we will mean a sequence of 

such cycles, the structures of which can be different. 

If an increase kl is Imparted to the k-th Coordinate alone, then in this 

case 
f (r -I- h,) - f (5) = (dk5, I&) + ‘18 ry, (z* hk) (3.3) 

where W(r, k,) has the same meaning 8s in Section 1. 

Teorem 3s21 If there exist operators & such that 

where XL are positive constants, then for functionaXs satisfying the condl- 

tlons of Theorem 2.1, the process (3.2) always col;verges to some solution 

X* of the system (3.l), Independent of form of the cycling adopted and of 

the nature of the initial approximation. 

Proof As in the precedi 
that uncer condition (3.4) Y 

case, it is not difficult here to prove 
process 3.2) gives rise to a descent in J(X). 

In fact, since now ktv) = (6, . . _, 6, Ak@), 6, , . ,I 61, we have 

f (J--f\ - f (x”‘) =T (A*&), hpf + ‘iSWk (id”, ny’t (3.5) 

On the basis of (3"&) we hence obtain 

f (&+l)) - f (J”)) I- - (Q-’ - ‘is ek”Kh.) (I?/$,(“), A,(“)) (6,, Q 1) (3.6) 

Since & are positive definite operators, the right-hand side of (3.61 
fs negative for 
By considerations 

s.L In the interval (3.41, i.e. there is a desce~~~~~re~(~~. 
similar to those in tjhe proof of the precedi 

we will deduce that the sequence (f (z” )I has a limit point 
necessary to prove that the element s’ 
system (3.1). 

can only be one of the solutions of 
For this purpose we form the difference 

Here J(z(~‘) is the value.of the functional attained after the fl-th cycle. 

Setting p = ndu {pk,) + 0, we obtain 

From the convergence of the sequence {f@")] it follows that to an arbi- 
trary small constant e$ there corresponds an index N such that 

. 
f (z’.h’) - f’(d)< EN. 
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By SDME! method we will find an appraxlmate solu+txkon of this equation. We 

will, denote it by x’~@~I)~ We have the S”allowlng theorem. 
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Result 1. If, In order to Impart to a deformable system an arbl- 

trary admissible displacement from some possible equilibrium state, It Is 

necessary to deliver positive work, then the system has a unique state of 

equilibrium for arbitrary values of the parameter h . Mathematically, this 

condition can be expressed by the positive definiteness of the operator 

A'(X)(XEH) in the space HrCH. 

It 1s ciear that in systems with increasing stiffness there exists always 

a unique state of equilibrium In the above sense. The same applies for sys- 

tems with decreasing stiffness If the functional W(X, h), or (A'(s)h, h), 

on decreasing, converges to some positive limit, as occurs In physically 

nonlinear problems In the case where the material exhibits actual hardening. 

However, this does not mean the exclusion of slip planes. In many cases It 

Is not difficult, on the basis of the above results, to check the admlsslbl- 

llty of such a plane and also Its length, which guarantees the existence of 

a unique solution. 

Most nonlinear equations of continuum mechanics can be written down as 

AxrBx +Cx = 0 

where B Is an operator of a corresponding linear problem and C Is some 

nonlinear operator. Since the operator B Is usually positive definite,1 

can be employed In the recurrence relation (2.2). Then the latter assumes 

the form 
xP+l) = (1 - a) xW - &-‘CxW 

In many cases It Is convenient to Include lnto.operator B (4.1) only 

some of the terms of the operator for the linear problem and all the remaln- 

lng terms are combined with the aid of operator C , since this can lead to 

a greatly slmpllfled computational program. For this purpuse it Is also 

possible to assume a quite similar well-known operator that satisfies the 

conditions of Theorem 2.1 . 

Now we will study some special features In the application of process 

(2.2), or (4.2), to the search for state of equlllbrlum In the above two 

types of deformable systems, I.e. with decreasing and Increasing stiffness. 

We will begin with the first type. 

For potentials with gradients of type (4.1) It Is easy to see that 

w(X, h) = (Bh, h) $ WI (x, h). Moreover, since Ax - Ex as l\~ll- 0, then 
h'(O,h)= (Bh,h). In addition, W(x, h) decreases with increase of loading; 

therefore, max w(x, h) = Y(O, h), and hence It follows that W,(r, h) < 0. 

Then condition (2.10, which In the present case assumes the form 

will always be satisfied, also with K = 1 . Hence we obtain: 

Result 2. For systems with decreasing stiffness, process (4.2) 
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always converges if we take 

o<a<2 (4.3) 

However, for values of W(X, h) close to zero, i.e. for values 

w1 (x9 h) - - (& h), 

the upper boundary of coefficient Q quickly increases and for obtaining 
good convergence it is necessary to take c > 2. 

From condition (4.3) it iS evident that In the problems considered process 
(4.2) converges also for cl :: 1 . Then the recurrence relation (4.2) assumes 
the form 

&tli = _ B-1 Cr(v) 
(4.4) 

In the theory of plasticity with proportional loading, process (4.4) cop- 
responds with the method of “elastic solutions” [g] . Its convergence for 
the first and second boundary-value problems In the case of actual work- 
hardening materials without slip planes was proved In [lo], where the rate 
of convergence was also demonstrated. We note, however, that in many studies 
of elastic-plastic deformation the method of coordinate descent turns out to 
be more effective. In the case when the problem is solved In terms of stres- 
ses, this method can be called the method of successive equilibrium or even 
the method of successive coupling. 

More complicated are those systems with decreasing stiffness, which with 
Increase of the loading parameter X are capable of becoming unstable or 
going Into a state of neutral equlllbrlum as a consequence of the physical 
nonlinearity of the material, when the stress-strain diagram has a horizontal 
asymptote, or a slip plane. Apparently, It Is more convenient to reduce 
investigations of the behavior of the equilibrium state of such systems to 
the study of the loading process. For this one must Introduce the time as 
a parameter [ll and 121 or treat the loading as a variable quantity for the 
solution of the system of nonlinear equations obtained by either Ritz or 
Galerkin method [ 53 . In both cases the problem Is reduced to the solution 
of a Cauchy problem. Depending on the form of the systems of nonlinear dlf- 
ferentlal equations obtained, this may lead to the accumulation of apprecl- 
able errors In the Integration process. A similar posslblty of carrying out 
this Idea arises in the application of the above-described processes (2.2), 
(3.2) and (3.7) to the determination of equilibrium states corresponding to 
different atages of a successive loading. This makes it possible to carry 
out in principle the calculations to an arbitrary degree of accuracy. It 
should be noted, however, that when values of W(x, h) close to zero are 
reached, it Is necessary to increase the value of coefficient a at each 
stage of the loading In order to obtain an acceptable rate of convergence. 
The occurrence of slow convergence at a fixed value of coefficient a , or 
divergence of processes (2.2) and (3.2) for the indicated physically non- 
linear problems may be interpreted as exhaustion, in some sense, of the 
actual ability of the construction. These processes of successive agproxi- 
mation also make possible the determination of: (1) the instant of snap 
through” in geometrically nonlinear problems of the type encountered in shell 
theory, and (2) “snap through” stable state of equilibrium s!.nce in this 
case the total energy of the system always remains bounded from below. 

The convergence of the successive approximations in the treated problems 

can be increased, if at each stage of the loading I( a new operator is 

adopted In the corresponding recurrence formulas; this Is reduced to the 

calculation of successive approximations as solutions of the approximately 

linearized equations 

B& Wl) = _ a(i,~s(v,, h(‘+‘) z #+l) - xc”) (4.5) 
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where B,i, Is an operator close to the operator A'(X) for r obtained as 

the.solution In the preceding loading stage u,_,. 

The matter Is radically simplified for systems with nondecreasing stlff- 

ness, possesing un!que states of equilibrium as a consequence of which a 

correctly formulated "mathematical model" allows a unique solution. Elastic 

systems which In the main undergo dilatation during the process of loading 

should be first of all regarded as the above mentioned systems. In this 

case the application of process (3.7) does not encounter any major dlfflcul- 

ties, and the peculiarity of applying processes (2.2) and (3.2) consists in 

the fact that one can not limit in advance the coefficient a from the above 

as It w&s possible In (4.3). This Is because the value of the coefficient 

c In the Inequality 0 < cz < C< 2 will be the smaller, the higher the 

value of W(x, h) reached in the course of deformation, I.e. as the stiffness 

of the deformable system Is higher. In this case the coefficient Q can be 

determined In several ways: for example, one can make use of the solution 

X0 + of the linear problem; In this case 11 Xc* /I> 1; 2* 11, which leads ts the 
value 

K > (A’ (n*j h, h) 
(B/L, h) 

I.e. to the smallest value c = 2/K. 

(h E HI) 

5. Let Equation (1.3) be a nonlinear differential equation given in a 

closed region n and with region of definition D. We will assume that the 

solution x* of this equation can be represented In the form of the conver- 

gent series 
2* (4 = al% (4 + ag, (x) + . . . (5.1) 

which Is differentiable as many times as needed by the differential equations. 

Here q,(p) Is a complete system of functions satisfying tne boundary con- 

ditions, and p Is an arbitrary point In region n . 

As Is well known, It follows from the Bubnov-Galerkin method that function 

x(p) Is approximated by means of n terms of series (5.1) 

Zn (P) = a,(")q, (P) _t . . . + C7,,(n)(Fn(P) (5.2) . 
where the coefficients a*('") are determined from the nonlinear system of 

equations 

(A&I, 'pk) = 0 (k=$,...,n) (5.3) 
which can also be written down as 

/I,&) = 0 (k = 1,. . . , nj p = (tp, . . . , a,‘“‘)) (5.4) 

Theorem 5.1. If solution x*(p)of equations (1.3) can be ex- 

panded in the form (5.1) and 

wtx, 4 > r* jl q* (I, h E w (5.5) 

then the Bubnov-Galerkln method converges, I.e. x,(P) - X*(P) . 
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Proof . . First we prove that, under the conditions of the theorem, 
system (5.4) has a Solution that is unique. We will set 

and since @%r@), c) = W (Em, h) >, Ta!!hIf~ 
system (5.4) follows from Theorem 2.1 . 

th e existence of a unique solution of 

We will further prove that with the coefficients a.(")so determined the 
transition from x,.., 
we here set 

to x, leads to a descent on f(i) . For this purpose 

2, = sn-1 
Then 

+ A, = "*_l +cU#r V) -t- ***+c,cp, m 

f (z,,,) - f (x?.J = - (A+ hJ + %Jv (s&~, &) 

However, by virtue of (5.3) 

lAxn h,) = (Axn, 
and consequently 

$I Ci’pi PI) = 5 C% (dxns ‘pi) = 0 
i=l 

i.e. y(x,_, 1 > y(x,) . 
bounded from below, 

Since under condltlon (5.5) the functional f(x) Is 
the sequence [J'(x.) has a limit point J(x') , We will 

prove that this point coincides with f x*) t , Let 

h = x* --‘=clcpl(e)+cacpa(P)$-~~~+~,~*+~~~ 

We form the difference _f(x*) - y{x') , taking into account (5.3) for 
n=rn 

f (x*) - f (x’) = (Ad, h) + ‘IzW (d, h) = 

= (AZ', ffj ciqi (P)) + "/# (I', h) = ‘&W (z’, h) > 0 
i==l * 

However, since f x') 
of the functional f X) t 

cannot be smaller than the minimum value of J+(x*) 
, It follows that ,%E 0,: 2.e. X* = x8. The theorem 

has been proved. 

Note . As a consequence of the above theorem we have the convergence 
of the generalized method of Bubnov-Galerkin, and also of the Ritz method 
for the problems considered. 

In application to problems in the nonlinear theory of shallow shells, the 
convergence of Bubnov-Galerkin method has been proved in [13 and 143, and in 
[15J it has been studled in a more general formulation. The convergence of 
Ritz method with sufficiently general assumption regarding the functionaf 
J+(X) has recently been proved in [16]. 

6. Let the following nonlinear differential equation be prescribed In a 

closed region G 
AxzBz+Cx=O (6.4) 

where B is some linear operator such that for the given boundary condi- 

tions of the problem it is possible to find the exact solution of the dlffer- 

entlal equation 
Bx =y (6.2) 

where p is an arbitrary function bounded In R . We will assume that the 
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unknown function can, with sufficient accuracy, be represented In the form 

xn (P) = i Q%, (P) 
i=l 

(6.3) 

where ai@) are certain coefficients and Q,(P) form a complete system of 

functions. Substituting (6.3) Into the nonlinear operator C of Equation 

(6.1) we obtain 

BX~ = - C (~~ ‘i(n) ‘Pi (P,) (6.4) 

From what was said above about (6.2), Equation (6.4) can be solved exactly. 

Its solution will have the form 

5, == - B-lC (,$, aP’cpi (P)) = xn (I’, a,(“), . . . , a,(“)) (6.5) 

which satisfies all boundary conditions of the problems for arbitrary values 

of the coefficients Ui(n). In order that (6.5) should be an exact solution cf 

the problem It Is necessary and sufficient that In region Q we have tne 

Identity X,, (P) E z,, (P). F or satisfying this condition, use can be made of 

the undetermlned’coefflclents ai@). The approximation of the method consists 

In the fact that It Is practically Impossible to do this exactly. 

In the computational treatment the above method Is rather more complicated 
than the Bubnov-Galerkln method, It has, however, certain Important advan- 
tages over the latter. For example, It enables the solution of partial dlf- 
ferentlal equations wlth.complex boundary conditions. such as occur, e.g. In 
the solution of a certain class of “contact problems”, etc. It Is Impossible, 
or at least very difficult, to satisfy these boundary condltlonb with the 
Galerkln method. Moreover, In many cases this method fnyade to a more accu- 
rate solution with the same number of coefficients ai. It should also be 
pointed out that here the functions Q(P) ln (6.3) must not necessarily 
satisfy all boundary conditions of the problem, as It Is requl:,ed In the 
application of the Bubnov-Galerkln method, 

In combination with the method of succenslve approximations, this method 
was first suggested by Novozhllov [17] for the solution of ordinary dlffer- 
entlal equations, 
ary conditions. 

requiring that the functions vi(p) satisfy all the bound- 
Its subsequent development for the solution of those same 

differential equations was given In [18]. In both works there 1s no proof 
of convergence. In the form presented here this method has been applied to 
the solution of nonllnearparticular differential equations.(*) In [ 191 It has 
been applied to the solution of ordinary linear differential equations ,:lth 
variable coefficients. In the same work there Is also proof of convergence 
for one class of differential equations; there Is also a comparison of Its 
accuracy with that using the Bubnov-Galerkln method. 

The Identification of the functions x. (P) and X, (p) In the given region 

n , as Is well kn0w.n [20], can be achieved In several ways. However, a 

suitable one In the present case consists In orthogonallzlng the differences 

xn (p) - x,(p) to all functions cpl (P) * Then the following system of equa- 

tions is obtained for the determination of the coefficients ai’ll): 

($ ai(n)qPi (P) + B-lC (i ai(“)ffJi (P)) , ‘pk (P)j = 0 (k = 1. * . . , n) 
z=1 i=l 

(6.6) 

*) S.V. Slmeonov. Dissertation. Leningrad Ship-building Institute, 1957. 
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In this case we have the following theorem. 

Theorem 6.1 . If.' as furbiOnS q,(P) we choose the elgenfunctions 

of the selfadjolnt operator B , and the coefficients a,(*’ are determined 
from the system of equations (6.6), then the above method converges, i.e. 

X” (P) - x*(P) , in all cases in which the Bubnov-Galerkin method converges. 

However, the approximate solution x,(P) can be more accurate than xD(p) 
obtained by the Bubnov-Galerkin method only when the method of successive 

approximations (2.2) applied to equation (6.1) converges with s = 1 . 

Proof We will prove that system (6.6) Is identical with system 
of the Bubnov-Galerkin method. For this 
by the corresponding expression from (6.1 B 

urpose we replace AX, in 
, keeping In mind that oper- 

ator B is selfadjoint, and we obtain 

However, since q, is an elgenfunction of operator B then 

(Axn, Q) = h, (x, + B-‘Cx,, Q) = 0 (k = 1, . . ., n) 

where 1, are the corresponding eigenvalues. Comparison of this system with 
system (6.6) makes it eviaent that they are identical. Consequently, if the 
Bubnov-Galerkin method converges, then so also does the present method. 

From what has been said above It is clear that x,(p) is none other than 
the approximation obtained by the Bubnov-Galerkin method, and according to 
(6.4 
x, (P 

x.(P) =-B-‘ha (P) . Comparing this expression with (4.2) shows that 
can be regarded as the next approximation of the successive approxl- 

mations (4.2) with Q = 1 if we take x,(p) as Initial approximation. Then 
the convergence of thls.ar&ess Is a sufficient condition In order that&(P) 
be more exact than xn (p) . 

Note Usually 2 (p) is obtained more exactly by determining x, 
not by (6.5)‘but by Formula 

5,& (P) == (1 - a) xn (P) -aQwlCxn (PI 

Here s can be determined according to Section 4, and 9,(p) satisfy all 
the boundary conditions of the problem. 
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